메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이태훈 (고려대학교) 김한주 (고려대학교) 전용권 (고려대학교) 윤성로 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2010 한국컴퓨터종합학술대회 논문집 제37권 제1호(C)
발행연도
2010.6
수록면
345 - 348 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 Isomap을 통해 기상 정보에서 특징을 추출하여, 보다 향상된 오존 경보 예측시스템의 구현을 제안한다. 큰 흐름은 전처리 과정과 특징 추출 과정 및 후처리 과정을 통해 정제한 데이터를, 기계학습에 널리 사용되고 있는 SVM (Support Vector Machine) 등의 분류기로 오존 경보에 대한 예측을 하여 성능을 측정한다. 또한, 압축된 데이터를 분석하여 원 데이터에서의 중요한 특징들이 무엇이었는지를 분석하였다. 분류기의 실험 결과, 기후 데이터에서의 특징 추출은 제안된 Isomap 방법이 PCA 방법에 비해 성능이 우수한 것을 알 수 있었으며, 원래 데이터를 분류한 결과에 비해서는 15~35%정도가 향상되었다. 그리고 실험에 사용된 72가지의 Feature들 중, Tb, WSa, WSp 의 정보가 오존 경보 예측에 주요한 요인 인 것으로 분석되었다.

목차

요약
1. 서론
2. 예측기 구현
3. 실험 방법 및 결과
4. 결론
5. 사사
6. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003118775