메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김지혜 (한성대학교) 장재영 (한성대학교) 윤홍준 (서울시립대학교) 김한준 (서울시립대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2010 한국컴퓨터종합학술대회 논문집 제37권 제1호(C)
발행연도
2010.6
수록면
53 - 57 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 많은 포털 사이트에서는 인기가 있거나 중요도가 높은 키워드에 대해 정보를 제공해주는 태그 클라우드나 연관 검색어 등의 기능이 제공되고 있다. 하지만 대부분의 뉴스기사 페이지들은 날짜와 분야별로 기사들이 나열되어 있으며 사용자는 카테고리별로 나누어진 기사를 읽을 수만 있을 뿐 그 기사와 연관된 다른 기사의 정보에 대해서 한눈에 알아 볼 수 있는 방법은 미흡한 실정이다. 또한 연관 검색어 서비스도 사용자가 검색한 입력 내용을 기반으로 연관성 정도를 분석하여 객관성을 보장하지 못하고 있다. 본 논문에서는 기존의 태그 클라우드 방식에서 좀 더 나아가 축적된 뉴스 기사로 부터 검색 키워드와 밀접히 연관된 키워드를 추출하여 제공하는 기사 검색 시스템을 소개한다. 이 시스템은 사용자가 기사 검색을 하였을 때, 키워드와 가장 밀접한 기사를 검색해 주는 것뿐만 아니라 검색어와 관련된 연관 키워드들을 보여주고 연관된 키워드간의 관계성을 보여줌으로써 뉴스 기사들 속에 숨겨진 연관정보의 탐색을 가능하게 한다.

목차

요약
1. 서론
2. 시스템 구성
3. 연관성 분석 기법
4. 개발 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003118159