메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chan-Kyoo Park (동국대학교)
저널정보
한국경영과학회 Management Science and Financial Engineering International Journal of Management Science Vol.16 No.1
발행연도
2010.5
수록면
81 - 117 (37page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM.
In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.

목차

ABSTRACT
1. Introduction
2. Support Vector Machines(SVM) and Transductive Support Vector Machines(TSVM)
3. A branch-and-bound algorithm for TSVM(BBTSVM)
4. Tightening Min-cut Bounds
5. Fixing the Label of an Unlabeled Example Early
6. Implementation and experimental results
7. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-325-002849491