메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이항찬 (한성대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제59권 제5호
발행연도
2010.5
수록면
990 - 995 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Harris corner detector is commonly used to detect feature points for recognizing 2-D or 3-D objects. However, the feature points calculated from both of query and target objects need to be same positions to guarantee accurate recognitions. In order to check the positions of calculated feature points, we generate a Huffman tree which is based on adjacent feature values as inputs. However, the structures of two Huffman trees will be same as long as both of a query and targets have same feature values no matter how different their positions are. In this paper, we sort feature values and calculate the Euclidean distances of coordinates between two adjacent feature values. The Huffman Tree is generated with these Euclidean distances. As a result, the information of point locations can be included in the generated Huffman tree. This is the main strategy for accurate recognitions. We call this system as the HRM(Hybrid Retrieval Machine). This system works very well even when artificial random noises are added to original data. HRM can be used to recognize biological data such as proteins, and it will curtail the costs which are required to biological experiments.

목차

Abstract
1. 서론
2. Harris Corner Detector
3. Huffman Code
4. HRM(Hybrid Retrieval Machine)
5. 실험결과 및 토론
6. 결론
감사의 글
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-003202860