메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손창식 (계명대학교) 신아미 (계명대학교) 이인희 (계명대학교) 박희준 (계명대학교) 박형섭 (계명대학교) 김윤년 (계명대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제2호
발행연도
2010.4
수록면
165 - 172 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
임상 데이터마이닝에서 최적의 특징 집합을 선택하는 것은 주어진 데이터로부터 생성된 모델의 복잡성을 줄일 뿐만 아니라 유용성을 향상시키는 데에 매우 중요하고, 선택된 특징들의 임계값은 질병의 감별진단을 위해 임상 전문가의 결정기준으로 사용된다. 본 논문에서는 데이터의 공간적인 분포, 즉 중첩영역에서 중복 속성값을 포함하는 데이터의 분리성 정도를 평가함으로써 연속형 속성을 가진 데이터에 대한 퍼지 이산화기법을 제안한다. 제안된 방법에서 중복 속성값의 가중치 평균값은 각 특징의 임계값(즉 경계값)을 결정하기 위해서 사용되었고, 러프집합은 전체 특징들 중에서 중요특징들의 집합을 선택하기 위해서 이용하였다. 제안된 방법의 타당성을 검증하기 위해 호흡곤란을 주호소로 내원한 668명의 환자 데이터를 근거로 3가지 이산화방법과 제안된 이산화방법에 대한 실험을 수행하였다. 실험결과, 퍼지분할을 기반으로 한 이산화방법이 하드분할을 기반으로 한 이산화방법에 비해서 평균 분류정확도와 G-mean 성능에서 보다 좋은 결과를 제공함을 확인하였다.

목차

요약
Abstract
1. 서론
2. 특징선택을 위한 러프집합
3. 연속형 속성의 이산화 방법
4. 실험 및 결과
5. 결론 및 토의
참고문헌
저자소개

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-003264649