메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김웅기 (수원대학교) 오성권 (수원대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 학술발표 논문집 한국지능시스템학회 2009년도 춘계학술대회 학술발표논문집 제19권 제1호
발행연도
2009.4
수록면
113 - 116 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 PCA와 유전자 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 유전자 알고리즘을 이용하여 다시 한번 추출하여 최적화한다. 유전자 알고리즘의 염색체 구조는 특징 벡터들의 데이터 집합을 임의의 방법으로 분류한 값으로 결정한다. 얼굴인식을 위한 방법으로는 유클리디안 거리를 이용하여 성능을 평가한다. 본 논문에서는 제안된 방법을 통해 최적화된 특징벡터의 차원 수를 알 수 있다.

목차

요약
1. 서론
2. PCA를 이용한 얼굴인식 방법
3. PCA+GA를 이용한 최적화
4. 시뮬레이션 및 고찰
5. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002278076