메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yoon Kyuchul (영남대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제1권 제4호
발행연도
2009.12
수록면
47 - 59 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this paper is to propose an automatic evaluation technique for the prosodic aspect of an English sentence uttered by Korean speakers learning English. The underlying hypothesis is that the consistency of the manual prosody scoring is reflected in an imaginary space of prosody evaluation model constructed out of the three physical properties of the prosody considered in this paper, namely: the fundamental frequency (F0) contour, the intensity contour, and the segmental durations. The evaluation proceeds first by building a prosody evaluation model for the sentence. For the creation of the model, utterances from native speakers of English and Korean learners for the target sentence are manually scored by either native teachers of English or Korean phoneticians in terms of their prosody. Multiple native utterances from the manual scoring are selected as the "model" native utterances against which all the other Korean learners' utterances as well as the model utterances themselves can be semi-automatically evaluated by comparison in terms of the three prosodic aspects [7]. Each learner utterance, when compared to the multiple model native utterances, produces multiple coordinates in a three-dimensional space of prosody evaluation, each axis of which corresponds to the three prosodic aspects. The 3D coordinates from all the comparisons form a prosody evaluation model for the particular sentence and the associated manual scores can display regions of particular scores. The model can then be used as a predictive model against which other Korean utterances of the target sentence can be evaluated. The model from a Korean phonetician appears to support the hypothesis.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results
4. Conclusion
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-701-002067824