메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第46卷 第6號
발행연도
2009.11
수록면
44 - 55 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 활발히 연구가 진행 중인 마이크로어레이로부터 얻어지는 유전자 발현 데이터를 이용한 질병 진단은, 데이터를 직접적으로 분석하기 힘들기 때문에 일반적으로 기계 학습 알고리즘을 사용하여 이루어져왔다. 그러나 유전자 발현 데이터를 분석함에 있어서 유전자들 간의 상호작용을 고려하는 분석이 필요하다는 최근의 연구 결과들은 기존 기계 학습 알고리즘들을 이용한 분석에 한계가 있음을 의미한다고 볼 수 있다. 본 논문에서는 특징들 사이의 고차원 상관관계를 고려 가능한 하이퍼네트워크 모델을 이용하여 유전자 발현 데이터의 분류를 수행하고 기존의 기계 학습 알고리즘들과 분류 성능을 비교한다. 또한 기존 하이퍼네트워크 모델의 단점을 개선 한 모델을 제안하고, 이를 병렬 프로세서 상에서 구현하여 처리 성능을 비교한다. 실험 결과, 제안 된 모델은 기존의 기계 학습 방법들과의 비교에서도 경쟁력 있는 분류 성능을 보여주었고, 기존 하이퍼네트워크 모델 보다 안정적이고 향상된 분류성능을 보여주었다. 또한 이를 병렬 프로세서 상에서 구현 할 경우 처리 성능을 극대화 할 수 있음을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 하이퍼네트워크 모델
Ⅳ. 병렬 프로세서 기반 하이퍼네트워크 모델
Ⅴ. 실험 및 결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-019100564