메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 KSCE JOURNAL OF CIVIL ENGINEERING KSCE JOURNAL OF CIVIL ENGINEERING Vol.10 No.2
발행연도
2006.3
수록면
91 - 96 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The capability to forecast future pavement condition has been questions of common interest for the economic reason for pavement management systems and the need to develop an intelligent prioritization schedule became ever more important for the sake of efficiency. If the pavement performance prediction model can be developed based on the past pavement performance data, the remaining service lives for pavements can be forecasted. It would help to optimize the scheduling of the rehabilitation activities and to determine the funding level required to achieve a predetermined level of performance. However, the results of the previous attempts to develop general pavement condition forecasting models have not been satisfied reliable because of the difficulties of collection pavement performance data, complexity of the pavement construction situation and different properties of pavement materials. The Georgia Department of Transportation (GDOT) has used the Pavement Condition Evaluation System (PACES) to evaluate the pavement conditions for the entire highway system in Georgia annually for the past 15 years. In this paper, the asphalt pavement performance prediction models for the state highways and the interstate highways have been developed applying simple and multiple regression analysis methods using the PACES data and PACES rating. The multiple linear regression model is effective to forecast pavement performance when ratings with various AADT. If this pavement performance prediction model using multiple linear regression analysis is implemented into the Pavement Management System, it could play an important role in the decision making process for the asphalt pavement management system.

목차

Abstract
1. Introduction
2. PACES Data Collection and Filtering
3. Predictors for Pavement Prediction Models
4. Methodology for Model Development and Discussion
5. Model Applications
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-019088992