메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 KSCE JOURNAL OF CIVIL ENGINEERING KSCE JOURNAL OF CIVIL ENGINEERING Vol.10 No.1
발행연도
2006.1
수록면
53 - 58 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Agricultural surface drainage water can deposit nitrogen and phosphorus into surrounding rivers and streams, therefore accelerating eutrophication which threatens the ecosystem. Surface drainage water, from paddy fields and other agricultural lands, is influenced by numerous factors such as spatial and temporal distribution of rainfall, land topography and soil characteristics. A Generalized Regression Neural Network (GRNN) model was used to define the influence of rainfall and surface drainage water on nutrient load into the neighboring water systems by predicting the surface water quality and quantity. The data was obtained from the 15 ha paddy fields surrounded by drainage and irrigation channels. Simulations showed reasonably good predictions of surface drainage water based On historical data of rainfall (R = 0.84). However, the resulting predictions for nutrient concentrations corresponding to surface drainage were somewhat varied (R = 0.72 and 0.40 in total nitrogen and total phosphorus, respectively). It is suspected that the model's prediction on nutrient concentrations consists of both natural and artificial variations of nutrient content in irrigation streams. Therefore, recommendations include providing a more.

목차

Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusion
Acknowledgements
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-019092009