메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
손미애 (성균관대학교) 강초롱 (성균관대학교)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2007년 추계학술대회 논문집
발행연도
2007.11
수록면
479 - 486 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
멘토링은 조직이나 사회 구성원들의 발전을 돕기 위한 프로그램으로서, 조언자, 상담자 및 후원자 역할을 하는 ‘멘토(mentor)’와 도움을 얻고자 하는 ‘멘티(mente)’가 긴밀한 관계를 맺고 유지함으로써 상호 발전을 위해 수행된다. 현재 이루어지고 있는 대부분의 멘토링은 면대면(face-to-face) 시스템이거나 웹 기반의 e-mentoring 시스템으로, 전자는 시간적 그리고 지역적 한계를 극복해야만 하고 후자는 멘토나 멘티가 멘토링 사이트에 접속하여 게시판을 확인하지 않으면 제대로 된 멘토링을 수행할 수 없다는 한계를 가지고 있다. 또한 멘토와 멘티의 매칭은 무작위로 이루어지거나 코디네이터라고 불리는 사람이 수행하기 때문에, 비용이 많이 소요될 뿐 아니라 개인적인 편견이나 오류가 개입될 여지가 상존한다. 이에 본 연구에서는 시간과 장소의 제약에 구애 받지 않는 u-Mentoring 시스템을 개발하고자 하며, 그 것 단계로써 멘토와 멘티간의 매칭을 지원하는 새로운 알고리즘(M3 Algorithm, Mentor-Mentee Matching Algorithm)을 제안하고자 한다. 본 연구에서 제안하는 알고리즘은 매칭의 정확도와 멘토-멘티의 매칭 만족도를 높이기 위해 멘토-멘티 온톨로지(M-Ontology)와 사례기반추론 기법을 사용하였다. 즉, 멘토-멘티의 효과적인 매칭을 위해, 멘토-멘티간 매칭 사례가 없는 초기 단계에는 멘토와 멘티의 속성 비교를 통한 추천 방식을 사용하고, 멘토링이 종료되어 충분한 멘토-멘티간 매칭 사례가 수집되면 그 결과를 재사용해 추후 매칭에 활용한다. 본 논문에서는 제안한 매칭 알고리즘이 내장된 u-Mentoring system의 프로토타입을 보여주고자 한다.

목차

Abstract
1. 서론
2. 관련 연구
3. u-Mentoring 시스템
4. M³ 알고리즘을 이용한 매칭
5. 프로토타입 시스템
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-019079398