메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최태훈 (현대엔지니어링(주)) 임성길 (경희대학교) 이현수 (경희대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제36권 제8호
발행연도
2009.8
수록면
633 - 641 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 아날로그 데이터 처리가 가능하고, 온라인 학습, 학습 중 새로운 클래스 추가등의 특징을 가진 패턴 인식기를 제안하였다. 제안한 패턴 인식기는 계층적 구조를 가지고 있으며, 각 레벨별로 서로 다른 메트릭을 적용하여 분류 성능을 향상 시켰다. 제안한 패턴 인식기는 신경망 기반의 패턴 인식 알고리즘인 Gaussian ARTMAP 모델을 기반으로 하고 있다. Gaussian ARTMAP 모델을 계층적으로 구성하고, 계층마다 서로 다른 특징을 학습하도록 하기 위하여 Principal Component Emphasis(P.C.E) 방법을 제안하였으며, 이를 이용하여 새로운 메트릭을 생성하는 방법을 제안하였다. P.C.E는 학습된 입력 데이터들의 분산을 이용하여 클래스 내의 공통 속성을 나타내는 분산이 작은 차원을 제거하고 패턴 간의 서로 다른 속성을 나타내는 분산이 큰 차원만 유지하는 방법이다. 제안한 알고리즘의 학습 과정에서 교사 신호와 다르게 분류된 패턴이 발생하면 잘못 분류 된 클래스와 입력된 패턴을 분리하기 위하여 P.C.E를 수행하고 하위 노드에서 학습하게 된다. 실험 결과 제안한 모델은 기존에 제안된 패턴 인식 모델들 보다 높은 분류 성능을 가지고 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. Gaussian ARTMAP의 구조와 동작
3. 계층적 Gaussian ARTMAP의 제안
4. 실험 및 결과 분석
5. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018672703