메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 대한토목학회논문집 A 大韓土木學會論文集 제26권 제4 A호
발행연도
2006.7
수록면
639 - 645 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
FRP(Fiber Reinforced Polymer)는 부식의 저항성, 고강도, 피로저항 능력 및 성형성 동에서 우수한 건설 신소재이다. 광섬유 브래그 격자(Fiber Bragg Grating; FBG) 센서는 전자기 저항, 작은 소재의 크기, 그리고 높은 내구성 등의 이점으로 smart sensor로서 현재 많이 사용되고 있다. 하지만 FBG 센서의 변위 측정 기술 능력의 부족으로 현재까지는 변형률, 온도 등의 물리량 측정센서로서 활용되고 있는 실정이다. 본 연구에서는 FRP와 FBG센서의 기능 복합화(Hybrid)를 통하여 smart FRP Rod를 개발 한 후 인장시험을 실시하였다. 또한, FBG센서에 의해 측정된 변형률 데이터를 신경망(Neural Network) 기법을 이용하여 변위 추정 모형을 개발함으로서 FBG 센서 단점인 변형률 계측만을 위한 센싱 역할을 극복하고자 한다. 인공신경망 모형은 MLP(Multi-layer Perceptron)로, 오차범위 0.001에 수렴 될 수 있도록 학습(training)을 실시하였다. 학습에는 비선형 목적함수와 역전파 학습(Back-propagation) 알고리즘을 적용하였으며 모형의 검증은 UTM에서 측정된 변위 값과 수치해석에 의한 결과 값을 비교함으로서 실시하였다.

목차

Abstract
요지
1. 서론
2. 신경망 모형(Neural Networks)에 대한 이론적 고찰
3. HFRP Rod 시험체 제작 및 인장실험
4. 인장실험 결과 및 분석
5. 변위 추정을 위한 신경망 모형의 구성
6. 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-018580408