메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제19권 제3호 (통권 제80호)
발행연도
2009.6
수록면
203 - 212 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지하고준위 방사성폐기물 처분장 근계영역에서의 거동을 예측하는 것은 처분장 설계나 안전성 평가에 중요하다. 본 연구에서는 3차원 유한차분 코드를 이용하여 처분장 설계인자 및 재료물성으로 구성되는 7가지 인자에 대한 민감도 분석을 실시하였다. 민감도 분석 결과 처분공 간격, 터널 간격, 냉각시간과 암반의 열전도도가 다른 인자에 비해 영향이 큰 것으로 나타났다. 처분장 주변의 암반과 완충재 온도의 통계적인 분포를 구하기 위해 backpropagation 인공신경망 기법이 적용되었다. 학습된 인공신경망의 적합성을 평가하기 위해 무작위로 선정된 입력 인자에 대한 예측이 실시되었다. 인자 값의 변화가 ±10% 인 경우, 신경망은 1% 오차로 신뢰할 수 있는 예측 결과를 보임을 알 수 있었다. 이렇게 학습된 신경망은 다양한 경우에 대한 신속한 온도 예측에 활용할 수 있었다. 완충재와 암반의 온도는 각각 평균 98℃, 83.9℃ 표준편차는 3.82℃ 와 3.67℃로 나타났다. 인공신경망을 이용함으로써 암반과 완충재 온도를 1℃ 변화시키기 위해 필요한 설계 인자의 조정 범위를 추정할 수 있었다.

목차

Abstract
초록
1. Introduction
2. HLW disposal concept and decay heat
3. Sensitivity analysis of near field on temperature
4. Application of neural network
5. Conclusions
Reference

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-532-018454115