메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
특허 문서는 과학기술 발전을 탐지하고 기존 트렌드를 이해함으로써 미래의 트렌드를 예측하는데 유용한 자원이다. 본 연구에서는 단위 기술을 “문제점”과 “해결방법”으로 구성되어 있다고 보고, 언어적 단서(linguistic clue)와 언어 모델(language model)을 결합한 혼합 모델을 사용하여 이들에 해당하는 의미 핵심문구(semantic keyphrase)를 찾고, 의미 핵심문구로 표현되는 단위 기술을 추출하였다. 추출된 결과에 근거하여 비지도 학습(unsupervised learning) 방법으로 과학기술들의 트렌드를 발견하는 새로운 접근방법(Technological Trend Discovery, TTD)을 제안한다. 실험 결과에 따르면 본 연구에서 제안한 방법으로 과학 기술을 나타내는 의미적 핵심 문구를 추출하는데 77%의 R-정확률을 달성하였고 결과적으로 의미있는 과학기술 트렌드를 발견할 수 있었다.

목차

요약
Abstract
1. 서론
2. 태스크 정의
3. 방법론
4. 실험결과
5. 관련 연구
6. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018380593