메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제33권 제5호
발행연도
2009.5
수록면
514 - 520 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In configuring an automated polishing system, a monitoring scheme to estimate the surface roughness is necessary. In this study, a precision polishing process, magnetic abrasive finishing (MAF), along with an inprocess monitoring setup was investigated. A magnetic tooling is connected to a CNC machining to polish the surface of stavax(S136) die steel workpieces. During finishing experiments, both AE signals and force signals were sampled and analysed. The finishing results show that MAF has nano scale finishing capability (upto 8㎚ in surface roughenss) and the sensor signals have strong correlations with the parameters such as gap between the tool and workpiece , feed rate and abrasive size. In addition, the signals were utilized as the input parameters of artificial neural networks to predict generated surface roughness. Among the three netwoks constructed -AE rms input, force input, AE+force input- the ANN with sensor fusion (AE+force) produced most stable results. From above, it has been shown that the proposed sensor fusion scheme is appropriate for the monitoring and prediction of the nano scale precision finishing process

목차

Abstract
1. 서론
2. 이론적 배경
3. MAF 시스템
4. 실험계획법에 의한 가공 특성 분석
5. MAF 가공 조건 변화에 따른 신호분석
6. 가공 조건 변화에 따른 신호 분석
7. 결론
후기
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-019527344