메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제18권 제6호
발행연도
2008.12
수록면
876 - 880 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주어진 데이터에서 대부분의 다른 관측치들에 비해 지나치게 크거나 작은 관측치를 이상치라고 한다. 이상치는 몇 가지 원인에 의해 발생한다. 이상치를 포함한 데이터의 분석결과는 이 값을 포함하지 않은 경우와 크게 달라질 수 있다. 일반적으로 이상치는 탐지를 통하여 찾아내어 제거한 후에 데이터분석을 수행한다. 하지만 사기탐지, 네트워크 침입 등의 데이터 마이닝 분야에서는 이상치가 중요한 정보를 포함하고 있기 때문에 반드시 포함하여 데이터분석을 수행하여야 한다. 본 논문에서 다루는 회귀모형에서는 기존의 단순, 다중 회귀분석은 이상치에 대하여 안정된 모형을 구축하기 어렵기 때문에 표준화 잔차 또는 스튜던트화된 잔차를 이용하여 이상치를 찾아내고 제거한 후의 데이터분석 수행을 추천한다. 본 논문에서는 회귀모형에서 이상치를 포함하여 효과적으로 데이터분석을 수행할 수 있는 한 방법으로 Vapnik이 제안한 통계적 학습 이론에 기반한 Support Vector Regression(SVR)을 이용하였다. 인공 데이터를 생성한 모의실험 결과 기존의 회귀모형에 비해 SVR의 향상된 결과를 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 이상치 데이터
3. SVR을 이용한 이상치 포함 데이터의 분석
4. 실험 및 결과
5. 결론 및 향후 연구과제
참고문헌
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-019447768