메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第25卷 第1號
발행연도
2009.1
수록면
13 - 20 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The load distribution to each mode of a structure under seismic loading depends on the modal participation factor and thus the exact estimation of the modal participation factor is essential to analyze the seismic response of a structure. The modal participation factor of an idealized analytical model, however, is different to the actual one due to modeling and construction error. Therefore, there exist limits on the estimation of actual behavior. In this study, an identification procedure for participation factor based on vibration test is proposed. The modal participation factor is obtained from the relationship between observability matrices realized from system identification. Using the oberservability matrices, it is possible to transform an arbitrarily identified state space model from the experimental data into a typical state space model which is defined in a domain with physical meaning. Then, the modal participation factor can be estimated based on the relationship between two state space models related by the oberservability matrices. The proposed procedure has an advantage that the modal participation factor for the mode shape vector can be estimated from the response of the corresponding floor without knowing responses of other floors. Further, the mode shape vector can also be estimated directly from the experimentally estimated modal participation factors. The numerical simulation and experimental verification are performed to evaluate the proposed procedure. The results show that the modal participation factor and mode shape vectors are estimated from the structural responses precisely.

목차

Abstract
1. 서론
2. 모드참여계수의 산정
3. 모드참여계수를 이용한 모드형상 산정
4. 수치해석 예제
5. 진동실험
6. 결론
참고문헌

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-015797084