메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 토픽 시그너처(Topic Signature)를 이용하여 댓글을 분류하는 시스템에 대해서 설명한다. 토픽 시그너처는 자질을 선택하는 방법으로 문서요약이나 문서분류에서 사용하는 방법이다. 댓글은 문장의 길이가 짧고 띄어쓰기가 거의 없으며 특수문자들이 많은 특성을 가지고 있다. 따라서 우리는 댓글을 7개의 음절로 나누고 이를 다시 Tri-gram으로 나누어 분류의 기본단위로 본다. 이 Tri-gram을 토픽 시그너처를 이용한 학습 단위로 사용하고, 학습한 자질을 베이지안(Bayesian) 모델을 사용하여 분류한다.
다양한 방법의 모델과 비교·실험을 통하여 구현한 시스템의 성능이 기존의 방법보다 상승되었음을 실험결과를 통해 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 댓글 분류 시스템
4. 실험 및 토의
5. 결론 및 향후 연구 과제
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0