메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 학술발표 논문집 한국지능시스템학회 2008년도 춘계학술대회 학술발표논문집 제18권 제1호
발행연도
2008.4
수록면
317 - 320 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 Type-l 퍼지 논리 시스템과 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 각각의 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현할 수 있으며 효율적으로 취급한다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다.
첫 번째 모델은 규칙의 전ㆍ후반부가 불확실성을 표현 할 수 없는 Type-l 퍼지 집합으로 구성된 Type-l 퍼지 논리 시스템을 설계한다. 두 번째는 규칙 후반부만 Type-2 퍼지 집합으로 구성한 두가지의 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할에는 Min-Max 방법의 균등분할을 사용하고, 규칙 후반부 맴버쉽 함수의 중심 결정에는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 동정한다. 또한 입력 데이터에 인위적으로 가하는 노이즈의 정도에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 실험을 통하여 불확실한 정보를 다루기에 Type-l 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

목차

요약
1. 서론
2. Type-1 퍼지 논리 시스템
3. Type-2 퍼지 논리 시스템
4. 시뮬레이션 및 결과 고찰
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0