메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제18권 제2호
발행연도
2008.4
수록면
157 - 162 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 대중에 의해 자유롭게 생성된 분류 체계인 폭소노미, 즉 대규모의 태깅 데이터로부터 태깅 온톨로지를 학습하는 방법을 제시하고 있다. 기존 소셜웹 시스템 간에는 태깅의 의미에 대해 공통의 합의가 이루어지지 않았기 때문에, 시스템마다 태깅 정보를 표현하기 위해 내부적으로 다른 방법을 쓰고 있으며, 따라서 소프트웨어 에이전트를 이용하여 시스템간의 정보처리를 자동으로 할 수가 없다. 이를 해결하는 방법으로 폭소노미를 위한 태깅 온톨로지가 필요하다. 태깅의 본질적인 속성을 분석하여 태깅 온톨로지를 정의하고, 태깅 데이터의 기계 학습을 통하여 유사 태그와 사용자 그룹 정보를 획득한 후, 태깅 온톨로지를 학습한다. 이의 활용 방안으로 학습된 태깅 온톨로지를 이용하여 모델링한 추천 시스템도 제안한다.

목차

요약
Abstract
1. 서론
2. 태깅 온톨로지
3. 온톨로지 학습
4. 추천시스템 모델링
5. 관련 연구
6. 결론 및 향후계획
참고문헌
저자소개

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0