메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 n-best 리랭킹을 이용한 한-영 통계적 음성 번역 시스템에 대해 논하고 있다. 보통의 음성 번역 시스템은 음성 인식 시스템, 자동 번역 시스템, 음성 합성 시스템이 순차적으로 결합되어 있다. 하지만 본 시스템은 음성 인식 오류에 보다 강인한 시스템을 만들기 위해 음성 인식 시스템으로부터 n-best 인식 문장을 추출하여 번역 결과와 함께 리랭킹의 과정을 거친다. 자동 번역 시스템으로 구절기반 통계적 자동 번역 모델을 사용하여, 음성 인식기의 발음 모델에서 기본 단어 단위와 맞추어 번역 모델과 언어 모델을 훈련시킴으로써 음성 번역 시스템에서 형태소 분석기를 제거할 수 있다. 또한, 음성 인식 시스템에서 상황 별로 언어 모델을 분리하여 처리함으로써 자동 번역 시스템에 비해 부족한 음성 인식 시스템의 처리 범위를 보완할 수 있었다.

목차

요약
1. 서론
2. 한국어 연속 음성 인식 시스템
3. 구절기반 통계적 자동 번역 시스템
4. n-best 리랭킹을 이용한 순차적 통합
5. 실험
6. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0