메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Methods for risk engineering is a bundle of engineering tools including fundamental concepts and approaches of soft computing with application to real issues of risk management. In this talk fundamental concepts and soft computing approaches of risk engineering will be introduced. As the term of risk implies both advantageous and hazardous uncertainty in its origins, a fundamental theory to describe uncertainties is introduced that includes traditional probability and statistical models, fuzzy systems, as well as less popular modal logic. In particular, modal logic capabilities to express various kinds of uncertainties are emphasized and relations with rough sets and evidence theory are described. Another topic is data mining related to problems in risk management. Some risk mining techniques including fuzzy clustering are introduced and a recently developed algorithm is overviewed. A numerical example is shown.

목차

Abstract
1. Introduction
2. Risks in General
3. Soft Computing with Applica-tions to Risk Issues
4. Concluding Remarks
Acknowledgment
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015035475