메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.5 No.3
발행연도
2005.9
수록면
206 - 215 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new design method of Genetic Algorithm Processor(GAP) and Evolvable Hardware(EHW). All sorts of creature evolve its structure or shape in order to adapt itself to environments. Evolutionary Computation based on the process of natural selection not only searches the quasi-optimal solution through the evolution process, but also changes the structure to get best results. On the other hand, Genetic Algorithm(GA) is good for finding solutions of complex optimization problems. However, it has a major drawback, which is its slow execution speed when is implemented in software of a conventional computer. Parallel processing has been one approach to overcome the speed problem of GA. In a point of view of GA, long bit string length caused the system of GA to spend much time that clear up the problem. Evolvable Hardware refers to the automation of electronic circuit design through artificial evolution, and is currently increased with the interested topic in a research domain and an engineering methodology. The studies of EHW generally use the XC6200 of Xilinx. The structure of XC6200 can configure with gate unit. Each unit has connected up, down, right and left cell. But the products can't use because had sterilized. So this paper uses Vertex-E (XCV2000E). The cell of FPGA is made up of Configuration Logic Block (CLB) and can't reconfigure with gate unit. This paper uses Vertex-E is composed of the component as cell of XC6200 cell in VertexE

목차

Abstract
1. Introduction
2. Evolvable Hardware
3. Genetic Algorithm Processor(GAP)
4. Simulation Results
5. Conclusion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015030223