메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제6호
발행연도
2005.12
수록면
688 - 694 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 클러스터링을 뉴로-퍼지 모델에 직접 적용하여 모델을 최적화하는 방법을 제안하였다. 기존의 오차미분기반 학습을 통한 뉴로-퍼지 모델의 최적화 과정과는 달리 제안된 방법은 클러스터링 학습과 연계하여 모델을 구성하며 자율적으로 클러스터의 수를 추정하며 동시에 최적화를 수행한다. 순차적인 학습 기법에서는 각각의 학습 기법을 따로 적용하여 모델링을 실시하였으나 제안된 기법에서는 하나의 클러스터링 학습으로 전체 모델의 학습을 실시하였다. 또한 제안된 방법에서는 클러스터링이 수렴하는 만큼 전체 모델의 연산량이 감소하여 학습과정에서 발생하는 연산량 문제를 개선하였다. 시뮬레이션을 통하여 기존의 연구 결과들과 비교하여 제안된 기법의 유용성을 보였다.

목차

요약
Abstract
1. 서론
2. 자기구성 클러스터링
3. 뉴로-퍼지 시스템의 구성
4. 시뮬레이션 및 결과
5. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014955767