메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제2호
발행연도
2004.4
수록면
130 - 135 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 데이터 마이닝을 이용한 단기 전력 부하 예측 시스템의 새로운 설계 기법을 제안한다. 제안된 단기 부하 예측시스템은 Takagi-Sugeno (T-S) 퍼지 모델 기반 예측기와 분류기로 구성된다. 또한, 제안된 T-S 퍼지 모델 기반 분류기는 전반부 가우시안 집합과 후반부 선형화된 베이지안 분류기로 구성된다. 분류기의 파라미터들은 주어진 훈련 집합의 통계적 수치로 쉽게 얻어진다. 제안된 T-S 퍼지 모델 기반 예측기는 한 가지 입력에 대한 선형 시계열 예측기의 볼록 조합 형태를 가진다. 후반부 파라미터 추정 문제는 실제 전력 부하와 예측 전력 부하의 놈(norm)을 최소화 하는 볼록 최적화 문제로 간주한다. 그 문제는 선형 행렬 부등식으로 설정됨으로써 후반부 파라미터는 추정된다. 전반부 파라미터 추정 문제는 선형 시계열 예측기들이 모여진 전체 T-S 퍼지 시스템의 출력과 실제 전력 부하 사이의 에러를 최소화 하는 문제이다. 이 문제는 경사치 하향 기법이 적용하여 해결되었다. 제안된 기법의 유용성을 검증하기 위해 본 논문은 하루 후 24시간 전력 부하 예측과 하루 후 최고 전력부하를 예측 실험을 제공한다.

목차

요약
Abstract
1. 서론
2. T-S 퍼지 시스템
3. T-S 퍼지 모델 기반 분류기 및 예측기
4. 모의 실험 결과 및 분석
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014902655