메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2008 종합학술대회 논문집 제35권 제1호(C)
발행연도
2008.6
수록면
456 - 461 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
클래스별 원형상(prototype)의 분포가 선형분리 불가능하고 동시에 분산이 서로 다르고 희박한 분포의 원형상에 있어서 입력패턴에 대한 고정밀도의 식별을 행하기 위해 클래스별 최근방 원형상과 그 k 근방원형상에 있어서 노름(norm) 평균에 기초한 최근방 결정법에 의한 패턴식별방법을 제안한다. 제안하는 방법의 유효성을 평가하기위해 인공적인 패턴과 실제 패턴에 대해 일반적인 k-NN법, 매해라노비스 거리(maharanobis distance), CAP, kCAP, SVM의 각각에 기초한 방법과 제안하는 방법을 적용하여 식별률에 의한 평가를 행하였다. 그 결과 특히, 원형상의 분포가 희박한 경우 제안하는 방법이 다른 방법들에 비해 높은 식별률을 나타냈다.

목차

요약
1. 서론
2. 제안방법의 알고리듬
3. 제안방법의 유효성 평가
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014839180