메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2008 종합학술대회 논문집 제35권 제1호(C)
발행연도
2008.6
수록면
376 - 380 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.

목차

요약
1. 서론
2. 선형회귀를 이용한 추천시스템
3. 실험 결과 및 분석
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014839024