메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
어떤 자연언어 문서가 전달하려는 의미는 그 텍스트의 성격에 따라 아주 명확할 수도(예: 뉴스 문서), 아주 불분명할 수도 있다(예: 시). 이 연구는 이러한 ‘의미의 명확성(semantic transparency)’을 정량적으로 측정할 수 있다고 가정하고, 이 의미의 명확성을 판단하는 데에 단어들의 연쇄(word association)의 확률통계적 성질들이 어떻게 기능하는지에 대해 논한다. 이를 위해 특정 단어가 연쇄체를 형성하면서 발생하는 neighboring frequency와 degeneracy를 중심으로 Markov chain Monte Carlo scheme을 적용하여 의미망('Semantic Hypernetwork')으로 학습시킨 후 문서의 구성 단어들과 그 집합들 간의 연결 상태를 파악하였다. 우리는 의미적으로 그 표상이 분명하게 나뉘는 문서들(뉴스와 시)을 대상으로 이 모델이 어떻게 이들의 의미적 명확성을 분류하는지 분석하였다. Neighboring frequency와 degeneracy, 이 두 속성이 언어구조에서의 의미망 기억과 학습 탐색 기제에 유의한 기질로서 제안될 수 있다. 본 연구의 주요 결과로 1) 텍스트의 의미론적 투명성을 구별하는 통계적 증거와, 2) 문서의 의미구조에 대한 새로운 기질 발견, 3) 기존의 문서의 카테고리 별 분류와는 다른 방식의 분류 방식 제안을 들 수 있다.

목차

요약
1. 서론: 의미적 명확성Semantic Transparency
2. Neighboring Frequency & Degeneracy
3. 의미망으로서의 하이퍼네트워크
4. 실험 과정
5. 실험 데이터
6. 분석 결과
7. 결론
8. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014838850