메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생명정보 대량 획득기술의 하나인 마이크로어레이(microarray)는 DNA와 각종 유적자 연구에 사용되는 도구로서 확립되면서, 생명정보학(bioinformatics)분야의 발전에 크게 기여하였다. 그러나 마이크로어레이는 생명정보학분야의 핵심기술 중 하나로 발전하였음에도 불구하고 마이크로어레이 실험으로 생성되는 데이터는 형태가 다양하고 매우 복잡한 형태를 갖기 때문에 데이터의 공유나 저장에서 많은 어려움을 겪는 것이 사실이다. 따라서 마이크로어레이 실험결과 분석을 위한 최소한의 컨텐츠가 정의되고 표준화 되었다. MIAME 데이터, MAGE-OM/ML과 같은 표준화된 공개 저장소는 전문 생물학 연구단체에게 과거부터 지금까지 주요 관심사가 되어왔다. 하지만 많은 공개저장소의 설립되었지만 마이크로어레이 데이터의 구조적 특징을 고려하여 효과적인 설계를 하지 않은 것이 사실이다. 본 논문은 표준을 따르는 동시에 마이크로어 레이 데이터의 구조적 빈발 패턴이 반복되는 계층적 특징을 반영하는 전략을 제안한다. 이를 통하여 복잡한 데이터의 구조를 객체들의 빈발 패턴을 파악하여 그 계층을 줄임으로서 복잡도를 줄일 수 있었다. 이 과정에서 관계형 데이터베이스 기반의 공개저장소의 성능에 영향을 주는 관계 테이블(join-table)의 숫자는 줄어든다. 이에 따라, 성능은 개선된다. 이 전략을 통하여 생성된 테이블의 숫자는 원본 데이터를 단순 매핑시켜 저장하는 방법에 비하여 약 31%줄어든다. 결국 MAGE-ML 데이터의 저장과 로딩 시간은 이 논문에서 제시하는 전략을 적용하지 않은 방법에 비해 60%에서 65%를 줄일 수 있었다.

목차

요약
1. 서론
2. 관련연구
3. 마이크로어레이 데이터와 MAGE
4. 의사결정트리 알고리즘을 사용한 핵심
5. 의사결정트리 알고리즘을 이용한 데이터베이스 설계
결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014823342