메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 알려진 데이터에 기반하여 분류 알고리즘을 통해 새로운 생물학적인 사실을 예측하는 것은 생물학 연구에 매우 유용하다. 하지만 생물학 데이터 분류 문제에서 positive 데이터만 존재할 뿐, negative 데이터는 존재하지 않는 경우가 많다. 이와 같은 상황에서는 많은 경우에 임의로 negative data를 구성하여 사용하게 된다. 하지만, negative 데이터는 실제로 negative임이 보장된 것이 아니고, 임의로 생성된 데이터의 특성에 따라 분류 성능 및 모델의 특성에 많은 차이를 보일 수 있다. 따라서 본 논문에서는 단일 클래스 분류 알고리즘 중 하나인 support vector data description (SVDD) 방법을 이용하여 실제 microRNA target 예측 문제에서 positive 데이터만을 이용하여 학습하고 분류를 수행하였다. 이를 통해 일반적인 이진 분류 방법에 비해 이와 같은 방법이 실제 생물학 문제에 보다 적합하게 적용될 수 있음을 확인한다.

목차

요약
1. 서론
2. 실험 방법
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014838830