메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제3호
발행연도
2005.6
수록면
294 - 299 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 선형적으로 혼합된 영상신호에 잡음이 첨가된 영상을 대상으로 뉴우턴법과 할선법의 고정점 알고리즘 독립성분분석을 적용하여 분리성능을 비교ㆍ검토하였다. 여기서 뉴우턴법의 고정점 알고리즘은 기울기 변화에 따른 속성을 이용하며, 할선법의 고정점 알고리즘은 접선의 변화를 이용하는 속성을 가진다. 실험에 이용된 신호는 2개의 512×512 픽셀 2차원 영상이며, 가우스 분포와 라플라스 분포의 잡음을 각각 이용하였다. 실험 결과, 원 영상을 분리하는 시간에서는 뉴우턴법의 고정점 알고리즘 독립성분분석이 할선법의 고정점 알고리즘 독립성분분석보다 보다 빠르며, 복원성능에서는 할선법의 고정점 알고리즘 독립성분분석이 더욱 우수한 특성이 있음을 알 수 있었다. 한편, 잡음이 많이 첨가될수록 뉴우턴법의 FP-ICA와 할선법의 FP-ICA사이의 추출속도와 분리성능은 더욱 더 큰 차이가 있음도 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 신경망 기반 ICA
3. 시뮬레이션 결과 분석
4. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014826938