메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제13권 제3호
발행연도
2003.6
수록면
360 - 365 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 데이터의 효율적인 활용과 정확성에서 보다 우수한 특성을 보이는 GMDH(Group Method of Data Handling) 알고리즘을 전력수요예측에 적용함으로써 입력 데이터의 선정을 용이하게 하였고, 다양한 데이터를 기반으로 보다 정확한 예측을 할 수 있게 하였다. 그리고, 예측 시에 경제적인 요인(GDP, 수출, 수입, 취업자 수, 경제활동인구, 석유소 비량)과 기후적인 요인(평균기온)을 모두 고려하였다. 또한 목표 예측 기간을 1999년 1/4분기에서 2001년 1/4분기까지 9개의 분기로 가정하고, 가정한 목표 기간의 예측 정확도를 높이기 위해 3단계의 시뮬레이션 과정(최적 입력 분기 수를 결정하는 과정, 입력 데이터와 예측값의 시간적 연관성을 분석하는 과정, 입력 데이터의 최적화 과정)을 이용함으로써 더 정확한 전력수요예측 방법을 제시하였고, 제안된 기법으로 목표한 예측 기간에서 0.96%의 평균 에러율을 얻을 수 있었다.

목차

요약
Abstract
1. 서론
2. 수정된 GMDH 알고리즘
3. 예측 알고리즘의 구현
4. 시뮬레이션 및 결과 분석
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014819113