메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제13권 제3호
발행연도
2003.6
수록면
316 - 321 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근들어, 서포트 벡터 학습은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 여러가지 서포트 벡터 학습 방법들 중 누-버전(nu-versions)으로 불리는 방법들은 서포트 벡터의 개수를 제어해야할 필요가 있는 경우에는 특히 유용한 것으로 알려져 있다. 본 논문에서는, ν -SVR로 불리는 누-버전 서포트 벡터 학습 방법과 미리 정해진 기저함수를 모두 활용하는 함수 근사 문제를 고려한다. ε-SVR, ν -SVR 및 세미-파라메트릭 함수 근사 방법론 등을 복습한 후에, 본 논문은 정해진 기저함수를 이용할 수 있는 방향으로 기존의 ν -SVR 방법을 확장하는 방안을 제시한다. 그리고, 제안된 방법의 적용가능성이 예제를 통하여 보여진다.

목차

요약
Abstract
1. 서론
2. 서포트 벡터 학습을 이용한 함수 근사
3. 정해진 기저함수가 포함되는 ν -SVR 학습방법
4. 모의 실험
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014819042