메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제12권 제5호
발행연도
2002.10
수록면
467 - 472 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서, 영상에서 임펄스 잡음을 효과적으로 제거하고, 연산 속도를 개선하기 위해 Fuzzy Cellular Neural Network(FCNN)구조에 Hausdorff distance(HD)를 적용한 α-Least Trimmed Square HD(α-LTSHD) 기반 FCNN 구조를 제안한다. FCNN는 Cellular Neural Network(CNN) 구조에 퍼지 이론을 적용한 것이고, HD는 특징 대상의 대응 없이 이진 영상의 두 픽셀 집합 사이의 거리를 구하는 척도로 물체의 정합에 널리 사용한다. 성능 평가를 위해, 제안된 방법을 MSE와 SNR을 이용하여 기존 FCNN, Opening-Closing(OC) 그리고 LTSHD 연산자를 적용한 FCNN과 비교 분석하였다. 그 결과, 본 논문에서 제안된 망(network) 구조의 성능이 다른 필터보다 임펄스 잡음 제거에 우수함을 확인하였다.

목차

요약
ABSTRACT
1. 서론
2. FCNN 구조
3. 기존 Hausdorff Distance 알고리즘
4. 개선된 α-LTSHD 알고리즘
5. 모의 실험 분석
6. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804832