메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제9호
발행연도
2001.12
수록면
811 - 816 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
정보 검색 시스템의 중요한 목적중의 하나는 단순히 사용자 질의를 만족하는 문서들의 집합을 검색하는 것이 아니라, 질의를 만족하는 정도에 따라 검색된 문서들에 순위를 부여함으로써 사용자들이 필요한 정보를 얻는데 소모되는 시간을 최소 화시키는 것이다.
순수한 부울 검색 시스템은 검색 전략이 이진값에 근거하여 순위 구분 없이 연관/비연관 중의 하나로 결정된다. 딸서 문서와 질의 사이의 유사도를 나타내는 문서값을 계산할 수 없기 때문에, 검색된 문서들을 질의를 만족하는 정보에 따라 정렬할 수 없다. 부울 검색 시스템의 이러한 단점을 보완하는 방법으로 MMM 모델, Paice 모델, P-norm 모델이 개발되었다. 본 논문에서는 높은 검색 효과를 제공하는 벡터모델에서 용어 가중치 재부여를 이용한 정보검색 모델을 제안한다. 벡터모델에서 용어 가중치 재부여를 이용한 질의 확장 모델의 연산 특성이 MMM, Paice, P-norm 모델보다 우수함을 설명하고, 또한 성능 비교를 통하여 이를 입증한다.

목차

요약
1. 서론
2. 부울연산을 유연하게 연산하는 기존의 방법들
3. 벡터모델에서 용어가중치 재부여
4. 실험 및 결과
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804625