메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Topologically consistent algorithms for the intersection and trimming of free-form parametric surfaces are of fundamental importance in computer-aided design, analysis, and manufacturing. Since the intersection of (for example) two bicubic tensor-product surface patches is not a rational curve, it is usually described by approximations in the parameter domain of each surface. If these approximations are employed as "trim curves", their images in ?³ do not agree precisely, and the resulting trimmed surfaces may exhibit "gaps" and "overlaps" along their common edge, an artifact that often incurs failure of downstream applications.
We present a direct and simple approach to the problem, wherein the intersection curve is described explicitly by the sides of a sequence of triangular Bezier patches. Instead of representing trimmed surfaces by trim curves in the surface parameter domain, together with appropriate control point perturbations to guarantee consistency, we use triangular patches to directly approximate the intersection curve and the trimmed surfaces it defines. The triangular patches are constructed so as to maintain smooth (i.e., tangent-plane continuous) connections to untrimmed patches of the original surface. We assume that the original intersecting surfaces are subject to a subdivision process, such that the intersection segment (if any) on each sub-patch is a smooth arc between diametrically opposite corners. This guarantees that all intersection segments, and the trimmed surfaces they delineate, are "simple" enough to admit accurate approximation using triangular Bezier patches.
Ensuring position and tangent plane agreement of degree-n triangular trimmed patch approximations p(r, s, t) and q(u, v, w) with given degree-(m, m) tensor-product patches p(r, s) and q(u, v) along the boundaries r = 0, s = 0 and u = 0, v ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014677824