메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-Ⅱ) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes (RANS) equations with k-ε turbulence model are discretized with fmite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-Ⅱ and local search strategy with weighted sum approach to refine the result obtained by NSGA-Ⅱ to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

목차

Abstract
1. Introduction
2. Numerical analysis
3. Objective function and design variables
4. Multi-objective optimization with hybrid MOEA
5. Result and discussion
6. Conclusions
Acknowledgements
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-553-001426630