메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국한의학연구원 한국한의학연구원 논문집 한국한의학연구원논문집 제13권 제2호
발행연도
2007.8
수록면
47 - 52 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In Oriental medicine, the status of tongue is the important indicator to diagnose one's health, because it represents physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non -invasive, therefore, tongue diagnosis is one of the most widely used in Oriental medicine. But tongue diagnosis is affected by examination circumstances a lot. It depends on a light source, degrees of an angle, doctor's condition and so on. So it is not easy to make an objective and standardized tongue diagnosis. As part of way to solve this problem, in this study, we tried to design a discriminant function for white and yellow coating with multi-dimensional color vectors.
There were 62 subjects involved in this study, among them 48 subjects diagnosed as white-coated tongue and 14 subjects diagnosed as yellow-coated tongue by oriental doctors. And their tongue images were acquired by a well-made Digital Tongue Diagnosis System. From those acquired tongue images, each coating section were extracted by oriental doctors, and then mean values of multi -dimensional color vectors in each coating section were calculated.
By statistical analysis, two significant vectors, R in RGB space and I-I in HSV space, were found that they were able to describe the difference between white coating section and yellow coating section very well. Using these two values, we designed the discriminant function for coating classification and examined how good it works. As a result, the overall accuracy of coating classification was 98.4%.
We can expect that the discriminant function for other coatings can be obtained in a similar way. Furthermore, if an automated segmentation algorithm of tongue coating is combined with these discriminant functions, an automated tongue coating diagnosis can be accomplished.

목차

Ⅰ. 서론
Ⅱ. 정의 및 연구방법
Ⅲ. 결과 및 고찰
Ⅳ. 결론
Ⅴ. 감사의 글
Ⅵ. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-519-001424892