메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국실험동물학회 Laboratory Animal Research THE KOREAN JOURNAL OF LABORATORY ANIMAL SCIENCE Vol.20 No.1
발행연도
2004.3
수록면
17 - 25 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Managing, processing and expressing data, the database system enables users to save their time and labor required for looking up and organizing useful data, as well as it helps to create some new information and ideas. For Korea, however, in the area of toxicological research, the history of toxicology hasn't been so lengthy and resources like the database system are not adequate. Because other previous database systems have managed the data in the form of a text file, it is not easy to quickly obtain a useful analyzed result. The goals of this project are to extract experimental data from the research on endocrine disruptors, to manage the data into a code form, to process the data, to create useful analyzed results, to help toxicological researchers, and to eventually facilitate the availability of the raw data. To achieve these goals, we first constructed the code tables from the reports, and then a pilot test was conducted. Depending upon the result of the pilot test, we determined the factors to be extracted as the data set from the reports. We then constructed the database tables and designed the software to manage the data-input. The data-input module helps users easily analyze the report in the paper form and also, to input the data. Developed in the web-based form, the data-search module is able to give access to the public, as well as to toxicological researchers. Because as the data is saved in a code form, the data-search module can provide much useful information and it has the potential to be a very powerful data-analyzing system.

목차

서론
개발환경 및 방법
결과 및 고찰
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-510-016364372