메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
전력전자학회 ICPE(ISPE)논문집 2007년 ICPE논문집
발행연도
2007.10
수록면
806 - 810 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Induction motors are widely used in industry due to the fact that they are relatively cheap, rugged and maintenance free. As a consequence, much attention has been given to the motor torque and speed control. The control schemes available today require information regarding speed of the motor, which can either be obtained by using speed sensors or without speed sensors. Speed sensors have several disadvantages from the standpoint of drive cost, reliability, inertia and noise immunity. Advantages of eliminating speed sensors thus have been a strong motivation to develop speed sensor less induction motor drives for industrial drives. Several control strategies of sensor less control are available in literature. This paper is an attempt to explore the possibility of estimation of rotor speed with the help of extended Kalman filter trained recurrent Neural Network. The speed estimation is made robust by simultaneously adapting the rotor resistance and rotor flux which are also done by the same Neural Network. The training is very fast as it requires only one iteration. The proposed scheme is studied on an induction motor and it gives better performance as compared to the already existing algorithms in the literature.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SPEED IDENTIFICATION PRINCIPLE
Ⅲ. PARAMATER BASED EKF ALGORITHM FOR TRAINING NEURAL NETWORK
Ⅳ. RESULTS
Ⅴ. CONCLUSIONS
EXPERIMENTAL SET UP
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-560-016307097