메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 프로테오믹스 분야에서 단백질의 추출, 분리기술의 발전과 고성능 질량분석 장비로 인하여 대량으로, 또 빠르게 샘플을 분석하는 것이 가능해짐에 따라서, 한번의 실험으로부터 얻어지는 실험데이타의 양이 대폭 늘어나게 되었다. 따라서 대량의 데이타를 어떻게 처리하여 필요한 정보만을 얻어내는가가 큰 이슈가 되고 있다. 하지만 기존의 데이타 해석과정은 불필요하게 계산자원을 낭비하는 요소를 상당 부분을 포함하고 있고, 이로 인해 데이타 해석 시간이 증가함은 물론, 종종 옳지 않은 해석 결과를 생성함으로써 결과에 대한 신뢰도의 저하를 초래했다. 본 논문에서는 기존의 데이타 해석 과정에서의 문제점을 지적하고, 데이타 처리의 효율을 높임과 동시에 해석 결과의 신뢰도를 제고하기 위한 SIFTER 시스템을 제안한다. SIFTER 시스템은 본격적인 데이타 해석에 앞서, 질량 스펙트럼의 질을 평가하고 하전량을 결정하는 소프트웨어를 제공한다. 탠덤 질량 스펙트럼에 나타나는 단편 이온의 특성을 고려하여 스펙트럼의 질과 하전량을 정확하게 결정하는 방법을 제공함으로써, 데이타 해석에 앞서 스펙트럼의 질이 낮아 해석이 불가능할 것이 분명한 경우 이들을 미리 제거하고 스펙트럼 해석과정에 잘못된 정보가 사용되지 않도록 한다. 결과적으로 데이타 해석과정에서의 효율과 해석결과의 정확성에 있어 대폭적인 개선을 기대할 수 있다.

목차

요약
Abstract
1. Introduction
2. Motivation
3. ALGORITHMS
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016041439