메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.11
발행연도
2007.11
수록면
1,760 - 1,774 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Following Nusselt [1] there were few developments in the theory of laminar film condensation until the advent of digital computers in the 1950s. Approximations used by Nusselt, namely neglect of inertia, convection and surface shear stress (for the free convection case) were then found to give very accurate results for the normal practical range of vapour-to-surface temperature difference. Subsequent developments treated the gas phase and dealt with superheated vapour, condensation in the presence of a non-condensing gas and condensation of mixtures. The temperature discontinuity at the vapour-liquid interface has been studied experimentally and theoretically since the 19<SUP>th</SUP> century and more recently in the 1960s by experiments using liquid metals.
In the present paper the focus is on the condensate film and, in particular, the role played by surface tension which is important for condensation on finned surfaces and in microchannels, owing to abrupt changes in curvature of the condensing surface. The way in which surface tension affects condensation heat transfer and difficulties which arise are first illustrated by reference to condensation on a smooth horizontal tube, where the effect of surface tension on heat transfer is minimal. Practically more relevant cases of condensation in microchannels and on finned surfaces and are then discussed and recent results presented.

목차

Abstract
1. Introduction
2. Surface tension effects in condensation on a horizontal smooth tube
3. Condensation in micro channels
4. Condensation on low-finned tubes
5. Theoretically-based correlation
6. Concluding remarks
Acknowledgements
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-015999555