메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오늘날 개인의 정보 보호 및 신분 확인을 위하여 생체 인식 분야 중에서 사람의 얼굴 인식기술이 많이 사용되고 있지만 조명, 자세, 표정 변화로 인하여 얼굴 인식의 성능 저하를 일으키는 문제가 있다. 본 논문에서는 얼굴 인식 결과에 큰 영향을 주는 요소인 조명 변화에 초점을 맞춰 D-LDA(Direct-Linear Disciminant Analysis)가 다른 기법들에 비해 덜 민감하게 수행할 수 있는 성질을 지녔음을 밝히고자 한다. 측면광과 역광등의 조명 변화와 농도의 변화를 고려하여 조명 변화를 갖는 테스트를 갖는 ORL, Yale, 포항공대 데이타베이스를 여러 특징 추출 알고리즘에 적용함으로써 클래스, 학습 데이타 그리고 테스트 데이타 수가 각기 다른 세 종류의 데이타베이스에서 모두 D-LDA가 적은 학습 데이타에서도 조명 변인에 가장 덜 민감하게 반응하는 좋은 인식 성능을 갖는 성질을 지녔음을 보여준다.

목차

요약
Abstract
1. 서론
2. 부분공간 기반의 특징 추출 기법
3. D-LDA(Direct-Linear Disciminant Analysis)
4. 실험 및 결과 고찰
5. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016859526