메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
메타데이타를 위한 검색모델은 질의에 사용자의 정보요구를 정확하게 반영하기 때문에 정확율(precision)은 높지만 질의 조건에 만족하지 않는 정보를 배제하므로 재현율(recall)은 낮다. 반면 전문(full-text) 텍스트 검색 모델은 사용자 질의에 대하여 모든 문서를 검색대상으로 하므로 정확율은 낮고 재현율은 높다. 메타데이타 검색모델의 높은 정확율은 사용자가 메타데이타의 구조적 특성에 맞게 질의를 구성할 경우 가능하지만 일반적으로 사용자가 메타데이타의 구조 정보를 반영한 사용자 질의를 구성할 수 있다고 기대하기는 어렵다. 또한 메타데이타에 포함된 정보의 양은 전문 텍스트가 가진 정보의 양보다 적기 때문에 텍스트를 검색한 결과보다 재현율이 떨어진다. 본 논문에서는 이러한 특성을 반영하여 메타데이타 검색 시, 사용자의 다양한 질의를 메타데이타의 특성에 맞게 재구성하고 메타데이타뿐 아니라 텍스트에 대해서도 검색을 수행하여 두 모델의 장점을 함께 고려한 통합 검색 모델을 제안한다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 정의
4. 검색환경
5. 유사 연구 비교
6. 통합 검색 모델
7. 실험
8. 결론 및 향후 연구방향
참고문헌

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016729543