메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.6
발행연도
2007.6
수록면
896 - 902 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SVM) classifier is developed for railroad track damage identification. A built-in active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage in a railroad track (hole-damage 0.5㎝ in diameter at the web section and transverse cut damage 7.5㎝ in length and 0.5㎝ in depth at the head section). Two damage-sensitive features were separately extracted from each method: a) feature I: root mean square deviations (RMSD) of impedance signatures, and b) feature Ⅱ: sum of square of wavelet coefficients for maximum energy mode of guided waves. By defining damage indices from these two damagesensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to enhance the damage identification capability of the current active sensing system, a two-step SVM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes (OSH) were successfully established by the two-step SVM classifier: Damage detection was accomplished by the first step-SVM, and damage classification was carried out by the second step-SVM. Finally, the applicability of the proposed two-step SVM classifier has been verified by thirty test patterns prepared in advance from the intact state and two damage states.

목차

Abstract
1. Introduction
2. Pezoelectric sensor-based SHM techniques
3. Damage index approach
4. Damage identification using support vector machines
5. Validation of the proposed approach
6. Conclusions
Acknowledgements
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016694682