메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2006년도 한국방송공학회 학술대회
발행연도
2006.11
수록면
283 - 288 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the future television broadcasting a flood of information from various sources will not always be welcomed by everyone. The need of accessing specific information as required is becoming a necessity. We are interested to make the life of television consumer easier by providing an intelligent television set which can adaptively proposed certain shows to the viewer based on the user historical consumed shows. The TV watching history data consists of TV program titles with their respective genres, channels, watched times and durations, etc. The method proposed is by utilizing Hidden Markov Model (HMM) to model the user preference of kind of genres the viewer will watch based on recorded genres of several weeks time. We take watching schedule from 6 PM to midnight as boundary. The range thus divided into 3 independent time band of 2 hours each resulting in 3 time bands from 6 PM to 8 PM, 8 PM to 10 PM, and lastly 10 PM to midnight. Each time band will be represented by an HMM. From each HMM we can generate a sequence of predicted genre that the user will probably watch during corresponding time-band. Our approach assumes that the user shows a consistent behavior of watching pattern in week to week basis and during the moment of watching TV. To asses the method performance experiment is conducted using real data collected from December 2002 to May 2003. Some user’s data are selected and based on that predictions are made. The resulting predictions are then compared with the actual user’s history. The experiment shows satisfactory result for user with middle to high consistent behavior level.

목차

Abstract
1. Introduction
2. Hidden Markov Model
3. Modeling a Personal TV Scheduler using HMM
4. Experiment and Results
5. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-568-016673072