메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제10권 제1호
발행연도
2005.3
수록면
83 - 102 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The problem of video scheduling is analyzed in the framework of divisible load scheduling. A divisible load can be divided into any number of fractions (parts) and can be processed/computed independently on the processors in a distributed computing system/network. as there are no precedence relationships. In the video scheduling, a frame can be split into any number of fractions (tiles) and can be processed independently on the processors in the network, and then the results are collected to recompose the single processed frame. The divisible load arrives at one of the processors in the network (root processor) and the results of the computation are collected and stored in the same processor. In this problem communication delay plays an important role. Communication delay is the time to send/distribute the load fractions to other processors in the network. and the time to collect the results of computation from other processors by the root proc essors. The objective in this scheduling problem is that of obtaining the load fractions assigned to each processor in the network such that the processing time of the entire load is a minimum. We derive closed-form expression for the processing time by taking into consideration the communication delay in the load distribution process and the communication delay in the result collection process. Using this closed-form expression, we also obtain the optimal number of processors that are required to solve this scheduling problem. This scheduling problem is formulated as a linear programming problem and its solution using neural network is also presented. Numerical examples are presented for ease of understanding.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Problem Statement
Ⅳ. Linear Programming Formulation for Video Scheduling
Ⅴ. Neural Network for Linear Programming Problem
Ⅵ. Conclusions
References
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-568-016664399