메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국정보기술학회 Proceedings of KIIT Conference 2005년도 하계종합학술발표논문집
발행연도
2005.7
수록면
69 - 74 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An algorithm proposed to illustrate the enhancement of edge features from 2D images. This algorithm used standard Multiresolution based wavelet de noising techniques. In this approach, we construct the undecimated schemes and evaluate their performance for image noise reduction. So that the Trous filter used to remove the noises and after that the Sobel operator applied over the same de noised images in order to detect the edges. Here, the reason for edge detection is that it shows better idea of how much noise is removed and how well the edges are preserved. Finally, the constructed image will be composite with original image which is extracted by Sobel operator without smoothing process. When we extract the edges from original image without smoothing process, we can get all high frequency information. In the next level, constructed images are enhanced by using image fusion technique. Here, the image which is smoothed by 'a trous' filter and the original image are given to the fusion technique. In this method, different piece of processed images will be combine together. So that the resultant image will have well extracted feature than the original image. Eventually. nonmaxima suppression is applied to get the thin edges. The experiment shows that the proposed algorithm can achieve better performance for the test images. This algorithm can be applicable for all 2D images. especially for medical images.

목차

Abstract
Ⅰ. Introduction
Ⅱ. A Trous algorithm
Ⅲ. Wavelet decomposition
Ⅳ. Wavelet based image fusion
Ⅴ. Suppression of nonmaximum gradients
Ⅵ. Experimental Results and Analysis
Ⅶ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-566-016515408