메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국식물병리학회 한국식물보호학회지 한국식물보호학회지 제22권 제2호
발행연도
1983.6
수록면
98 - 105 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rapid increase in cases of insect resistance to insecticides indicates that the contribution of present chemical control practices inevitably leads to exhaustion of available insecticide resources against key insect species. Now the problem of insecticide resistance exists worldwide among insects and mites affecting field crops and animals including human beings, ranging from minimal or absent in some developing countries, where use of insecticides has been low, to extremely severe in many developed countries.
Since the occurrence of insect resistance to insecticides was firstly recognized in 1908, the increase in recent decades has been almost linear and now the number of species of insects and acarines in which resistant strains have evolved have been increased to a total of 432. Of these, 261(60%) are agricultural importance and 171(40%) of medical/veterinary importance. The phenomenon of insecticide resistance is asserting itself as the greatest challenge to effective chemical control of many important insect pests.
Resistance of insects to insecticides has a history of nearly 80 years, but its greatest increase and its strongest impact have occurred during the last 40 years following the discovery and extensive use of synthetic organic insecticides and acaricides. The impact of resistance should be considered not only in terms of greater cost of pest control due to increased dosages and number of applications but also in terms of the ecological disruption of pest-beneficial species density relationships, the loss of investment in the development of the insecticides concerned, and socio-economic disruption in agricultural communities.
Despite its grave economic consequences, the phenomenon of insecticide resistance has received surprisingly little attention in Korea. Since the study of insecticides started firstly in 1963, many entomologists have been concerned with this study. According to their results, some of the rice pests and some of the mites on orchard trees, for example, have developed worrisome level of resistance in several areas of this peninsula.
With many arthropods, considerable advances in the developed countries have been made in the study of the biochemical and physiological mechanisms of resistance.
Progress involves the biochemical characteristics of specific defense mechanisms, their genetics, interactions, and their quantitative and qualitative contribution to resistance. But their sutdies are still inadequately known and relatively little have been contributed in terms of unique schemes of population management in achieving satisfactory pest control. It is apparent that there is no easy solution to resistance as a general phenomenon.
For future challenging to effective control of insect pests which are resistant to the insecticides concerned, new insecticide groups with distinctly novel mode of action are urgently needed. It is clear, however, that a great understanding of the factors which govern the intensity of selection of field population for resistance could lead to far more permanently successive use of chemicals within the framework of integrated pest management than heretofore practiced.

목차

ABSTRACT
緖言
抵抗性의 定義와 抵抗性 害?의 出現機構
抵抗性系 害?發生의 近況
殺?劑抵抗性의 類型分類
抵抗性 發達速度의 支配要因
殺?劑 抵抗性 害?防除의 今後對策과 硏究方向
引用文獻

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-481-017569277